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Useful References

• Ferrari Dacrema, Moroni, Nembrini, Ferro, Faggioli, Cremonesi.
Towards feature selection for ranking and classification exploiting quantum 
annealers.
SIGIR 2022
https://doi.org/10.1145/3477495.3531755

• Nembrini, Carugno, Ferrari Dacrema, Cremonesi. 
Towards recommender systems with community detection and quantum 
computing. 
RecSys 2022
https://doi.org/10.1145/3523227.3551478

• Nembrini, Ferrari Dacrema, Cremonesi. 
Feature selection for recommender systems with quantum computing.
Entropy 2021
https://doi.org/10.3390/e23080970
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Outline of the Tutorial

• Part 1: QC Foundations (40 min, Paolo)
• Introduction to QC
• Introduction to QA

• Part 2: QUBO Formulation (50 min, Maurizio)
• How to write NP-complete binary decision problems in QUBO formulation
• Feature selection and clustering with QA
• Architecture of a Quantum Annealer: number of available qubits and their topology

• Break

• Part 3: Evaluation of QC for IR and RS (20 min, Nicola)
• Effectiveness and efficiency
• The QuantumCLEF lab

• Part 4: Hands-on (70 min, Andrea)
• The QuantumCLEF infrastructure
• How to program a Quantum Annealer
• Hands-on: feature selection and clustering
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Part 1.

Quantum Computing 
Foundations
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(High Level)
Introduction to Quantum 

Computing



13:20

A quantum 
computer ...

• .... It's not just a more 
powerful version of the 
computers we use today
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A quantum 
computer ...

• ... It is something 
completely different, 
based on new and 
seemingly mysterious 
scientific knowledge, 
where the boundary 
between reality and 
science fiction is blurring
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Play cards with a QC: Deutsch–Jozsa algorithm
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Play cards with a QC: Deutsch–Jozsa algorithm
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In this game there are three scenarios
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Play cards with a QC: Deutsch–Jozsa algorithm
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Scenario 1: Balanced

50% Kings

50% Aces
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Play cards with a QC: Deutsch–Jozsa algorithm
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Scenario 2: All Kings
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Play cards with a QC: Deutsch–Jozsa algorithm
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Scenario 3: All Kings
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Play cards with a QC: Deutsch–Jozsa algorithm
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Cards are now covered and shuffled

How many cards do we need to look at to discover if we are in scenario 1, 2 or 3?
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Play cards with a QC: Deutsch–Jozsa algorithm
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Classical Computing:

n/2 + 1
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Play cards with a QC: Deutsch–Jozsa algorithm
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Quantum Computing:

only one !
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Build a quantum computer
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In the world there are normal and quantum objects
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In the world there are normal and quantum objects

• Normal objects behave according to 
the rules of common sense and follow 
the laws of traditional physics
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In the world there are normal and quantum objects

• Normal objects behave according to 
the rules of common sense and follow 
the laws of traditional physics

• Quantum objects behave in a funny 
and strange way, because they follow 
the laws of quantum physics
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But what are quantum objects?

• Very small, microscopic particles, such 
as atoms, electrons, photons, if isolated 
from the rest of the world, behave like 
quantum objects
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But what are quantum objects?

• Very small, microscopic particles, such 
as atoms, electrons, photons, if isolated 
from the rest of the world, behave like 
quantum objects

• Superconducting objects, cooled to 
temperatures very close to absolute 
zero, behave like quantum objects
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What is a Quantum Computer?

A computer composed of quantum objects called

qubits

which follows the laws of

quantum mechanics

We perform computations by manipulating qubits
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How is a qubit made?
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Technology Operation

Superconductors 20 mK

Photons 1 K

Electrons 1 K

Ions High vacuum

Atoms High vacuum

Diamonds Environment

Topological …
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Principles of Quantum Mechanics
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Principles
of

Quantum 
Mechanics
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Principles of Quantum Mechanics
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Superposition

Principles
of

Quantum 
Mechanics
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Principles of Quantum Mechanics
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Principles of Quantum Mechanics
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Principles of Quantum Mechanics
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Superposition

Principles
of

Quantum 
Mechanics

Entanglement

DecoherenceTunneling
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What makes a Quantum Computer fast?
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Classical Computing Quantum Computing

With n bits
you can run up to

n operations
at the same time

With n qubits
you can run up to

2n operations
at the same time
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How is a Quantum Computer made?



13:20
Quantum Computing Models and Architectures:
how do you manipulate qubits …
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Universal Quantum Computer

Quantum Annealing

Gate.Based

D-Wave
Adiabatic QC

Simulated QA

35

Measurement-
Based
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Quantum Computing Models and Architectures:
how do you manipulate qubits …
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Universal Quantum Computer

Quantum Annealing

Gate.Based

D-Wave
Adiabatic QC

Simulated QA
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Measurement-
Based
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(Scary)
Introduction to Quantum 

Computing
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Bloch sphere representation of qubits

• Qubits can take infinite values on the sphere
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Bloch sphere representation of qubits

• Qubits can take infinite values on the sphere

• Special values for qubits

• 0 =
1
0

• 1 =
0
1

• + =
1

2

1
1

• − =
1

2

1
−1
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Dirac’s notation:

• Writing QC algorithms mostly reduce to manipulate unitary matrices and vectors (of 
complex numbers)

• Dirac's notation (also know as bra-ket notation): compact notation for the most 
common manipulations that happens in QC algos
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Dirac’s notation:

• Writing QC algorithms mostly reduce to manipulate unitary matrices and vectors (of 
complex numbers)

• Dirac's notation (also know as bra-ket notation): compact notation for the most 
common manipulations that happens in QC algos

• ket = 𝑣 Ԧ𝑣 (column vector)

• bra = 𝑣 Ԧ𝑣𝐻 (row vector)

• 𝑥 𝑦 Ԧ𝑥𝐻 ∙ Ԧ𝑦 (scalar product between vectors Ԧ𝑥 and Ԧ𝑦)

• 𝑎 𝑣 𝑎 ∙ Ԧ𝑣 (product between constant 𝑎 and column vector Ԧ𝑣)

• 𝑀 𝑣 𝑀 ∙ Ԧ𝑣 (product between square matrix 𝑀 and column vector Ԧ𝑣)

• 𝑥 𝑀 𝑦 Ԧ𝑥𝐻 ∙ 𝑀 ∙ Ԧ𝑦
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Adiabatic Quantum Computing (AQC)

• Instead of building a circuit to do what we want, one operation at a time, we 
leverage the natural tendency of a physical system to evolve towards (and remain 
into) a state of minimal energy

• Adiabatic process
• a process occurring without transferring energy or mass with the systems surroundings

• The adiabatic theorem for the evolution of a quantum system states that
• if there is an energy gap between the ground state and other states

and

• if the evolution of the system in time is sufficiently slow

then

• the system remains in a state of minimal energy (ground state)
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AQC: The idea

• I have a problem to solve which I can represent as the energy of a quantum system 
called the Hamiltonian
• the minimum energy state (ground state) corresponds to the solution I want 

• it is difficult to find

• I can evolve a quantum system maintaining it in a minimum energy state

adiabatic condition: slow evolution

POLIMI 2023 Paolo Cremonesi: A Gentle Introduction to Quantum Computing 52
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AQC: Procedure

• Start from an initial configuration (superposition) in which we can easily find the 
ground state

• Slowly alter the system to include the problem I want to solve while reducing the 
weight of the initial configuration

• Once the initial configuration weight goes to zero, the system only depends on the 
problem I want to solve, and it remains in the ground state

POLIMI 2023 Paolo Cremonesi: A Gentle Introduction to Quantum Computing 53

superposition final
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Quantum Annealing vs. Adiabatic Evolution

POLIMI 2023 Paolo Cremonesi: A Gentle Introduction to Quantum Computing 54
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Time-dependent Hamiltonian

• The energy of a quantum system can be represented by a time 
dependent Hamiltonian 

• which is composed by two terms

𝐻 𝑡 = 𝐴 𝑡 𝐻𝐴 + 𝐵 𝑡 𝐻𝐵

• Here 𝐻𝐴 and 𝐻𝐴 represent the two Hamiltonians for the initial 
state (A) and the problem that we want to solve (B)

• 𝑨 𝒕 and 𝑩 𝒕 control the weight of the two Hamiltonians over 
time
• analogous to the temperature schedule used in Simulated Annealing
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Ising model and QUBO problems

• Currently available QA hardware uses Hamiltonian that describes an Ising model

• The Ising model describe the interactions between qubits 𝑧

𝐻𝐵 = 

𝑖

ℎ𝑖𝑧𝑖 + 

𝑖>𝑗

𝐽𝑖,𝑗 𝑧𝑖𝑧𝑗

• where ℎ𝑖 represents a bias on qubit i and 𝐽𝑖,𝑗 describes the coupling strength 
between qubits i and j

• A problem can be described by setting the values of ℎ𝑖 and 𝐽𝑖,𝑗

• The Ising Hamiltonian describes a quadratic unconstrained binary optimization 
problem (QUBO)
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Ising model and QUBO problems

• With a change of variables, it is possible to show that the Ising problem is 
equivalent to a Quadratic Unconstrained Binary Optimization problem (QUBO)

argmin
𝒙



𝑖

𝑎𝑖 𝑥𝑖 + 

𝑖≥𝑗

𝑄𝑖,𝑗 𝑥𝑖𝑥𝑗 = argmin
𝒙

𝒙𝑇𝑄𝒙

• The problem is often represented in terms of spins 𝑠𝑖 ∈ −1, +1

• We can easily transform the problem formulation from spins 𝑠𝑖 ∈ −1, +1 to 
binary variables 𝑥𝑖 ∈ 0,1

𝑥𝑖 =
1

2
𝑠𝑖 +

1

2
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The Eigenspectrum

ECIR 2024 Quantum Computing for Information Retrieval and Recommender Systems

Remains in the ground state Jumps into a higher energy state
“Landau–Zener” transition

due to heat or evolution too fast

58
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AQC vs. Quantum Annealing

• Adiabatic QC leverages quantum tunneling, just as Quantum Annealing, and in 
general has a wider computational power 

• Adiabatic convergence is stricter than QA, so the first implies the latter
• adiabatic QC is a specific type of QA, which is also universal

• Quantum Annealing evolves the same Hamiltonian but relaxes some of the 
stringent requirements of the adiabatic theorem.
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Quantum Annealing and D-Wave

• Adiabatic Quantum Computing is equivalent to quantum circuit model (universal)

• D-Wave QPU
• non-positive real off-diagonal elements of the Ising formulation J

• as such, is not not universal

• D-Wave QPU
• coupling every qubit to every other qubit is physically impractical

• J must be very sparse …

• One of the most immediate consequences is that we cannot rely on a single 
measurement, but we need to run the experiment multiple times to account for the 
impact of both the noise and the limited evolution schedule

• We use QA to do sampling from a “distribution”
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Thanks
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